Introduction
The human eye is an organ which reacts to light for several purposes. As a conscious sense organ, the mammalian eye allows vision. Rod and cone cells in the retina allow conscious light perception and vision including colour differentiation and the perception of depth. The human eye can distinguish about 10 million colours (Judd & Wyszecki).

In common with the eyes of other mammals, the human eye’s non-image-forming photosensitive ganglion cells in the retina receive the light signals which affect adjustment of the size of the pupil, regulation and suppression of the hormone melatonin and chronobiology of the body clock (Zimmer).

The eye is not shaped like a perfect sphere, rather it is a fused two-piece unit. The smaller frontal unit, more curved, called the cornea is linked to the larger unit called the sclera. The corneal segment is typically about 8 mm in radius. The sclerotic chamber constitutes the remaining five-sixths; its radius is typically about 12 mm. The cornea and sclera are connected by a ring called the limbus.

The iris – the colour of the eye – and its black centre, the pupil, are seen instead of the cornea due to the transparency of the cornea. To see inside the eye, an ophthalmoscope is needed, since light is not reflected out. The fundus (area opposite the pupil) shows the characteristic pale optic disk (papilla), where vessels entering the eye pass across and optic nerve fibres depart the globe (Wikipedia).
Cancer of the Eye
An eye cancer is a cancer that starts in the eye. Different types of cancers can be found in the eye.

Primary intraocular cancers - are cancers that start inside the eyeball. In adults, melanoma is the most common primary intraocular cancer, followed by primary intraocular lymphoma. In children, retinoblastoma (a cancer arising from cells in the retina) is the most common primary intraocular cancer, and medullopithelioma is the next most common (but is still extremely rare).

Secondary intraocular cancers - start somewhere else and then spread to the eye. These are not truly 'eye cancers', but they are actually more common than primary intraocular cancers. The most common cancers that spread to the eye are breast and lung cancers. Most often these cancers spread to the part of the eyeball called the uvea. The uvea consists of the middle layer of tissue surrounding the eye and is made up of the iris, ciliary body, and choroid.

Intraocular melanoma (melanoma of the eye) - Intraocular melanoma is the most common type of cancer that develops within the eyeball in adults, but it is still fairly rare. Melanomas of the skin are much more common than intraocular melanomas.

Melanomas develop from pigment-making cells called melanocytes. When melanoma develops in the eyeball, it is usually in the uvea, which is why these cancers are also called uveal melanomas. About 9 out of 10 intraocular melanomas develop in the choroid (which is part of the uvea). Choroid cells make the same kind of pigment as melanocytes in the skin, so it is not surprising that these cells sometimes form melanomas.

Nearly all of the remaining intraocular melanomas start in the iris (also part of the uvea). These are the easiest for the patient and doctor to see because they often start in a pigmented spot on the iris that has been present for many years and then begins to grow. These melanomas usually are fairly slow growing, and they rarely spread to other parts of the body. For these reasons, people with iris melanomas generally have a good prognosis (outlook).

Intraocular melanomas are generally made up of 2 different kinds of cells:
- spindle cells: these are long, thin cells
- epithelioid cells: these cells are almost round but with some straight edges

Most tumours are composed of both kinds of cells. The outlook is better if the tumours are mostly spindle cells as opposed to mostly epithelioid cells. Epithelioid tumours are more likely to metastasize (spread) to distant sites (such as the liver). If you have intraocular melanoma, your doctor can tell you which type of cells were found.

Primary intraocular lymphoma (lymphoma of the eye) - Lymphoma is a type of cancer that starts in immune system cells called lymphocytes. It usually starts in lymph nodes, which are bean-sized collections of immune system cells scattered throughout the body. Lymphomas can also start in internal organs such as the stomach, lungs, and rarely, in the eyes.

There are 2 main types of lymphoma: Hodgkin disease and non-Hodgkin lymphoma. Primary intraocular lymphoma is always a non-Hodgkin lymphoma. Most people with primary intraocular lymphoma are elderly or have immune system problems such as the acquired immunodeficiency syndrome (AIDS). Primary intraocular lymphoma is often seen along with lymphoma of the brain, known as primary central nervous system (CNS) lymphoma.
Rare cancers in children - There are 2 main types of cancers of the eyeball that develop in children. These are:

- **Retinoblastoma** - a rare type of eye cancer that nearly always occurs in children under the age of 5
- **Medulloepithelioma** - a very rare type of eye tumour found most often in young children. It does not usually spread. Treatment is surgery to remove the tumour. Occasionally, this will involve removing the eye.

(American Cancer Society; Cancer Research UK; University of Iowa Clinics and Hospitals; MD Anderson Cancer Center; MacMillan Cancer Support).

Cancer Affecting the Retina of the Eye

Cancers affecting the retina usually occur in the choroid, a dense layer of blood vessels that supplies the retina. The choroid is sandwiched between the retina and the sclera (the outer white layer of the eye). Because the retina depends on the choroid for its support and half of its blood supply, damage to the choroid by a cancer is likely to affect vision.

Choroidal melanoma: Choroidal melanoma is a cancer that originates from the pigment-producing cells (melanocytes) of the choroid. Choroidal melanoma is the most common cancer originating in the eye. It is most common among whites. It is less common among darker-skinned people. It occurs most frequently at age 55 to 60.

In its early stages, the cancer usually does not interfere with vision. Later, it may cause blurred vision or retinal detachment, with symptoms such as flashes of light, a veil or curtain across the visual field, or a sudden increase or change in floaters (objects that appear to move through a person's field of vision). Melanomas, particularly if large, may extend into the orbit or spread through the bloodstream (metastasize) to other parts of the body and may be fatal.

Early diagnosis is important because smaller tumours are easier to cure. The diagnosis is made using an ophthalmoscope and doing tests, which may include ultrasonography, fluorescein angiography and serial photographs.

If the melanoma is small, treatment with a laser, radiation, or an implant of radioactive materials may preserve vision and save the eye. If the cancer is large, the eye may have to be removed.

Choroidal metastases: Choroidal metastases are cancers that have spread to the choroid from other parts of the body. Because of its rich blood supply, the choroid is often a place to which cancers from other parts of the body may spread. In women, breast cancer is the most common cause. In men, cancers of the lung and prostate are the most common causes.

Often, these cancers cause no symptoms until they are advanced. Symptoms, when they develop, are often loss of vision or symptoms of retinal detachment. Vision loss may be severe.

Treatment is usually with chemotherapy, radiation therapy, or both (Merck Manual).
Choroidal Melanoma

Choroidal melanoma is a cancer that affects part of the eye. It develops in the choroid, the sponge-like membrane at the back of the eye between the sclera (the white of the eye) and the retina. (The retina is the light-sensitive structure at the back of the eye. It sends visual information to the brain.) The choroid is rich in blood vessels and supplies nutrients to the retina.

Over time, many choroidal melanomas enlarge and cause the retina to detach. This can lead to vision loss. The tumours also can spread (metastasize) to other parts of the body. The liver is the most common site for metastasis. If it spreads, this cancer can be fatal.

Although choroidal melanoma is rare, it is the most common eye cancer in adults. It usually occurs in people who are middle-aged or older.

Melanomas usually occur in the skin. But they can also develop in places where certain cells contain the pigment melanin. The choroid is one such example (Intelihealth.Com).

Eye Melanoma

Melanoma is a type of cancer that develops in the cells that produce melanin — the pigment that gives the skin its colour. The eyes also have melanin-producing cells and can develop melanoma. Eye melanoma is also called ocular melanoma.

Most eye melanomas form in the part of the eye one cannot see when looking in a mirror. This makes eye melanoma difficult to detect. In addition, eye melanoma typically does not cause early signs or symptoms.

Treatment is available for eye melanomas. Treatments for some small eye melanomas may not interfere with vision. However, treatment for large eye melanomas typically causes some vision loss. Eye melanoma may not cause signs and symptoms. When they do occur, signs and symptoms of eye melanoma can include:

- a growing dark spot on the iris
- a sensation of flashing lights
- a change in the shape of the dark circle (pupil) at the centre of your eye
- poor or blurry vision in one eye
- loss of peripheral vision
- sensation of flashes and specs of dust in your vision (floaters)

(Mayo Clinic).

Lacrimal Gland Tumour

The lacrimal glands are the glands that secrete tears and are located above and to the side of the eye. When lacrimal gland cells become abnormal and multiply, they form a growth of tissue called a tumour. A lacrimal gland tumour can be benign (noncancerous) or malignant (cancerous, meaning it can spread to other parts of the body). There are four major types of lacrimal gland tumours:

- **Benign mixed epithelial tumour** - A benign mixed epithelial tumour is a noncancerous tumour that does not spread to other parts of the body but will continue to grow if not treated. This type of tumour begins in the cells that line the lacrimal gland.
Malignant mixed epithelial tumour - A malignant mixed epithelial tumour also begins in the cells that line the lacrimal gland. If it is not treated, it will spread to other parts of the body.

Lymphoma - Lymphoma can involve various structures of the eye, however, the conjunctiva (the mucous membrane lining the inner surfaces of the eyelids and the outer surface of the white of the eye) and lacrimal glands are the most common. Most ocular (eye-related) lymphoma is non-Hodgkin lymphoma, and may be associated with systemic (whole body) or central nervous system (brain and spinal cord) lymphoma.

Adenoid cystic carcinoma (AdCC) of the lacrimal gland - AdCC is a rare form of adenocarcinoma, which is a broad term covering any cancer arising from glandular tissues. An AdCC tumour is characterized by a distinctive pattern, in which bundles of epithelial cells surround and/or infiltrate ducts or glandular structures within the organ. When an AdCC tumour of the lacrimal gland grows, it commonly pushes the eye forward and causes it to bulge, a condition called proptosis. Another characteristic is pain, due to local nerves being invaded by the tumour (Cancer.Net).

Retinoblastoma in Children
Retinoblastoma is a rare type of eye cancer which mainly affects children under 5 years of age. Around 98% of children are successfully treated.

The signs of retinoblastoma, such as a white reflection in the eye or white pupil, or a squint, as described below, can also be caused by other less severe conditions and can sometimes be a complete false alarm and not be anything at all. Although this may be the case it is always best to have a child's eyes checked just to rule out any serious illness.

The most important thing to do if you see any of the symptoms is to get the child's eyes examined quickly.

The signs to look out for
A white reflex: A white eye, white pupil or white reflection can be seen in a photograph where the flash has been used. Often one eye will have "red eye" which is normal but the other eye may look white, yellow or orange. This may be seen in just one or many photographs of the child. A white 'reflex' or white eye/pupil may also be seen when the child is in artificial light or a darkish room. Some parents say that it looks like a cat's eye caught in light or that they think they can see the back of their child's eye, other parents say it looks like jelly. This white reflex may only be seen every so often but in some cases it is present all the time.

An absence of 'red eye' in flash photographs: In a photograph where one eye has 'red eye' (which is normal) the other eye may look black or looks 'wrong'. This can also be a sign that something is not right.
A squint: A squint can be a sign of retinoblastoma, although a squint can also be nothing more than a squint. It is always worth having it checked out quickly just to make sure. Some people call a squint a "lazy eye"; it is where one or both eyes look in or out.

Red, sore or swollen eye without infection: A child's eye may become very red and inflamed for no reason. This sign is usually linked with other signs.

A change in colour to the iris: The iris, the coloured part of the eye, can sometimes change colour in one eye, sometimes only in one area.

Deterioration in vision: A child may have deterioration in their vision or they may have had poor vision from birth. You may notice that your child does not focus or fix & follow as well as other children or babies of the same age.

If one or more of the above signs are noticed always take the child to have his/her eyes examined.
(Retinoblastoma Childhood Eye Cancer Trust – including picture credits).

Medulloepithelioma in Children
Medulloepithelioma is uncommon. Its precise incidence is also unknown. Based on relative prevalence data from multiple clinical and pathological case series, however, its incidence can be estimated at approximately one thirtieth to one fiftieth that of retinoblastoma. This would correspond to a cumulative lifetime incidence of approximately 1 case per 450 000 to 1 000 000 persons.

Intraocular medulloepithelioma is usually a congenital or infantile tumor, although juvenile- and even adult-onset cases have been reported. The average age of the affected individual at diagnosis is about 5 years in most series. Medulloepithelioma affects all ethnic groups and both sexes equally. It does not appear to be transmitted genetically. No known risk factors exist for this tumour.

Ocular Manifestations
The usual presenting symptoms of medulloepithelioma are a red eye, change in colour of the iris, visible mass in the iris, and (in adults and some older children) visual impairment. Medulloepithelioma of the ciliary body typically appears as a tan to white lesion of the extreme peripheral fundus. Because of its peripheral location, the tumour may be detectable only by binocular indirect ophthalmoscopy under anesthesia. A tumour of this type frequently appears intrinsically cystic or has prominent neuroepithelial cysts on its surface. In
occasional patients, localised absence of the zonule and resultant abnormalities of lens curvature (lens coloboma), lens subluxation, and cataract have been observed. (Free Medical Textbook).

Incidence of Cancer of the Eye in South Africa

According to the National Cancer Registry (2012) the following number of eye cancer cases was histologically diagnosed in South Africa during 2012:

<table>
<thead>
<tr>
<th>Group - Males</th>
<th>Actual No of Cases</th>
<th>Estimated Lifetime Risk</th>
<th>Percentage of All Cancers</th>
</tr>
</thead>
<tbody>
<tr>
<td>All males</td>
<td>330</td>
<td>1:771</td>
<td>0.89%</td>
</tr>
<tr>
<td>Asian males</td>
<td>4</td>
<td>1:2 284</td>
<td>0.51%</td>
</tr>
<tr>
<td>Black males</td>
<td>292</td>
<td>1:619</td>
<td>2.51%</td>
</tr>
<tr>
<td>Coloured males</td>
<td>15</td>
<td>1:2 297</td>
<td>0.35%</td>
</tr>
<tr>
<td>White males</td>
<td>18</td>
<td>1:1 557</td>
<td>0.09%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group - Females</th>
<th>Actual No of Cases</th>
<th>Estimated Lifetime Risk</th>
<th>Percentage of All Cancers</th>
</tr>
</thead>
<tbody>
<tr>
<td>All females</td>
<td>400</td>
<td>1:779</td>
<td>1.06%</td>
</tr>
<tr>
<td>Asian females</td>
<td>3</td>
<td>1:2 148</td>
<td>0.30%</td>
</tr>
<tr>
<td>Black females</td>
<td>373</td>
<td>1:630</td>
<td>2.26%</td>
</tr>
<tr>
<td>Coloured females</td>
<td>9</td>
<td>1:3 611</td>
<td>0.21%</td>
</tr>
<tr>
<td>White females</td>
<td>15</td>
<td>1:2 315</td>
<td>0.10%</td>
</tr>
</tbody>
</table>

The frequency of histologically diagnosed cases of cancer of the eye in South Africa for 2012 was as follows (National Cancer Registry, 2012):

<table>
<thead>
<tr>
<th>Group - Males</th>
<th>0 – 19 Years</th>
<th>20 – 29 Years</th>
<th>30 – 39 Years</th>
<th>40 – 49 Years</th>
<th>50 – 59 Years</th>
<th>60 – 69 Years</th>
<th>70 – 79 Years</th>
<th>80+ Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>All males</td>
<td>39</td>
<td>8</td>
<td>87</td>
<td>104</td>
<td>48</td>
<td>18</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Asian males</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Black males</td>
<td>26</td>
<td>3</td>
<td>77</td>
<td>88</td>
<td>40</td>
<td>15</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Coloured males</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>White males</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group - Females</th>
<th>0 – 19 Years</th>
<th>20 – 29 Years</th>
<th>30 – 39 Years</th>
<th>40 – 49 Years</th>
<th>50 – 59 Years</th>
<th>60 – 69 Years</th>
<th>70 – 79 Years</th>
<th>80+ Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>All females</td>
<td>20</td>
<td>33</td>
<td>138</td>
<td>118</td>
<td>47</td>
<td>13</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Asian females</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Black females</td>
<td>16</td>
<td>28</td>
<td>123</td>
<td>102</td>
<td>36</td>
<td>11</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Coloured females</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>White females</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

N.B. In the event that the totals in any of the above tables do not tally, this may be the result of uncertainties as to the age, race or sex of the individual. The totals for ‘all males’ and ‘all females’, however, always reflect the correct totals.

Risk Factors for Cancer of the Eye

The following risk factors were identified:

Risk factors for primary intraocular melanoma
Race/ethnicity - the risk of intraocular melanoma is much higher in whites than in African Americans or Asian Americans

Research and Authorised by Prof Michael C Herbst
[D Litt et Phil (Health Studies); D N Ed; M Art et Scien; B A Cur; Dip Occupational Health]
Approved by Ms Elize Joubert, Chief Executive Officer [BA Social Work (cum laude); MA Social Work]
April 2017
Eye colour - People with light coloured eyes have an increased risk of intraocular melanoma. People with blue eyes are somewhat more likely to develop melanoma of the eye than are people with brown eyes.

Certain inherited conditions – The following inherited conditions are of importance:

- **Dysplastic nevus syndrome**: in which people have abnormal moles of the skin and an increased risk of skin melanoma, may also increase the risk for developing melanoma of the eye.
- People with abnormal brown spots on the uvea (known as oculodermal melanocytosis or nevus of Ota) also have an increased risk of developing eye melanoma.
- Eye melanomas can run in some families who do not have these conditions, but this is very rare.

Sun exposure - Although too much exposure to sunlight (or sunlamps) has been proposed as a possible risk factor for melanoma of the eye, it has never been proven.

Certain occupations - Some studies have suggested that welders, farmers, fishermen, chemical workers, and laundry workers may have a higher risk of eye melanoma, but none of these links has been proven conclusively.

Risk factors for primary intraocular lymphoma

The only known risk factor for primary lymphoma of the eye is having a weakened immune system. Examples include patients with the acquired immunodeficiency syndrome (AIDS) as well as people who take anti-rejection drugs after organ or tissue transplants. (Medline Plus).

Signs and Symptoms of Eye Cancer

Many patients with eye melanoma don’t have symptoms unless the cancer grows in certain parts of the eye or becomes more advanced. Signs and symptoms of eye melanomas can include:

- Problems with vision (blurry vision or sudden loss of vision)
- Floaters (spots or squiggles drifting in the field of vision) or flashes of light
- Visual field loss (losing part of your field of sight)
- A growing dark spot on the iris
- Change in the size or shape of the pupil
- Change in position of the eyeball within its socket
- Bulging of the eye
- Change in the way the eye moves within the socket
- Pain is rare except in cases of massive spread outside the eye. In such cases, bulging or a change in the position of the eye may also be noted.

Other, less serious conditions can also cause many of these symptoms. For example, floaters may occur as a normal part of the aging process. Still, if any of these symptoms are...
experienced, it is important to see a doctor right away so the cause can be found and treated, if needed. (American Cancer Society).

Diagnosis of Eye Cancer

Leading-edge diagnostic tools and methods for diagnosing eye cancer include:

- sentinel lymph node biopsy to detect early microscopic metastasis
- ultrasound biomicroscopy to diagnose intraocular tumours
- confocal biomicroscopy
- optical coherence tomography (OCT) for more accurate diagnosis of conjunctival cancers

Other Eye Cancer Diagnostic Tests

In addition to damaging vision, eye tumours can spread to the optic nerve, the brain and the rest of the body. Therefore, early diagnosis and treatment are extremely important. Melanoma tends to spread via blood vessels to distant organs.

Usually an examination by an ophthalmologist or other eye care provider can diagnose ocular cancer. Tests may include:

- dilated retinal exam to help diagnose intraocular tumours
- ultrasound of the eye for intraocular tumours
- careful inspection of the outside of the eye and eye movements for orbital, eyelid and conjunctival tumours
- imaging tests, such as:
 - CT or CAT (computed axial tomography) scans
 - MRI (magnetic resonance imaging) scans
 - surgical biopsy to confirm cancers of the orbit, eyelid or conjunctiva

(MD Anderson Cancer Center; Johns Hopkins Medicine).

Examination of the Eye

Examination of the eye by an ophthalmologist (a medical doctor specialising in diseases of the eye) is often the most important step in diagnosing melanoma of the eye. The doctor will ask about any symptoms and check vision and eye movement. The doctor will also look for enlarged blood vessels on the outside of the eye, which can be a sign of a tumour inside the eye.

The ophthalmologist may also use special instruments to get a good look inside the eye for a tumour or other abnormality. Drops may be put in the eye to dilate the pupil before the doctor uses these instruments.

- An **ophthalmoscope** (also known as a direct ophthalmoscope) is a hand-held instrument consisting of a light and a small magnifying lens.

(Picture Credit: Ophthalmoscope)
An indirect ophthalmoscope and a slit lamp is more like a large microscope. For this exam, the patient sits down and rests his/her chin on a small platform, while the doctor looks into his/her eye through magnified lenses. This examination can often provide a more detailed view of the inside of the eye than the direct ophthalmoscope.

A gonioscopy lens is a specially mirrored lens that is placed on the cornea (after it is numbed). This lets the doctor see the deep structures in the angle of the front of the eye near the iris. It can provide information on tumour growth into areas of the eye that would otherwise be hard to see.

Most of the time, an eye examination alone can make the diagnosis. In some cases, imaging tests such as ultrasound may be required to confirm the diagnosis. Very rarely a biopsy will also be needed.

Many people have a benign tumour in the eye called a choroidal nevus, which can sometimes be mistaken for an eye melanoma. A small number of these will eventually turn into melanomas. If the ophthalmologist spots one of these, he or she will likely advise regular eye exams to see if it grows.

If symptoms and/or the results of the eye exam suggest eye cancer, more involved tests will likely be done. These might include imaging tests or other procedures.

Ultrasound scan - an ultrasound of the eye is usually done. A local anaesthetic will be put on to the surface of the eye. Then the doctor will move a small probe over the eye's surface to help find out more about the tumour, including its size. This might be a little uncomfortable, but should not be painful.

Angiogram - The doctor may take pictures of a suspected cancer with a special camera. This test is called a fluorescein angiogram. This means looking at blood vessels using a type of dye. The patient is given an injection of dye (called fluorescein) into the arm. The dye travels through the bloodstream to the blood vessels of the eye. The camera shows up the dye on photographs, which helps the doctor to find out more about the nature of any possible tumour.

Testing genetic information in the cells - If there is an ocular melanoma the surgeon may ask a pathologist to examine the biopsy sample or tumour for abnormalities of the chromosomes in the tumour cells. This is known as cytogenetic testing and it may help to show the stage of the melanoma.
Other tests – A patient may have blood tests to check his/her general health and see how well their liver and kidneys are working. Melanoma of the eye can spread to the liver so an ultrasound scan of the liver is quite likely to check for any spread of the cancer. (American Cancer Society; Cancer Research UK).

Grading of Eye Cancer

Staging is a way of describing where the cancer is located, if or where it has spread, and whether it is affecting the functions of other organs in the body. Doctors use diagnostic tests to determine the cancer's stage, so staging may not be complete until all the tests are finished. Knowing the stage helps the doctor to decide what kind of treatment is best and can help predict a patient's prognosis. There are different stage descriptions for different types of cancer.

One tool that doctors use to describe the stage is the TNM system. This system judges three factors: the tumour itself, the lymph nodes around the tumour, and if the tumour has spread to other parts of the body. The results are combined to determine the stage of cancer for each person. The stage provides a common way of describing the cancer, so doctors can work together to plan the best treatments.

In addition to staging, doctors may use other information to help figure out prognosis and the risk of the cancer spreading. These findings may also be included on the pathology report and include:

- alterations to the cancer cell's chromosomes (as described in Diagnosis); for example, one copy of chromosome three, called monosomy 3, can indicate a higher risk of the cancer spreading
- gene expression profiles (as described in Diagnosis); these tests classify a tumour into class I (at lower risk for metastasis) and class II (at higher risk for metastasis)
- other characteristics of the cancer cells, such as the grade (see below for more details)

TNM is an abbreviation for tumour (T), node (N), and metastasis (M). Doctors look at these three factors to determine the stage of cancer:

- how large is the primary tumour, and where is it located? (T, tumour)
- has the tumour spread to the lymph nodes? (N, node)
- has the cancer spread to other parts of the body? (M, metastasis)

Some ophthalmologists may not use the TNM system to stage an intraocular tumour. However, they still consider the size of the tumour and how it is affecting a person's vision when deciding on a treatment plan.

Specific information about the TNM system is listed below. In eye cancer, T for an iris melanoma is described differently than T for choroidal and ciliary body melanomas. N and M are described the same for iris, choroidal, and ciliary body melanomas.

Tumour. Using the TNM system, the ‘T’ plus a letter and/or number (0 to 4) is used to describe the size and location of the tumour. Some stages are also divided into smaller
groups that help describe the tumour in even more detail. The following classifications are
the same for any type of intraocular melanoma:

TX: the primary tumour cannot be evaluated
T0: there is no tumour in the eye

Iris melanoma
An iris tumour is classified as T1, T2, T3, or T4. Some stages are divided into smaller groups
that help describe the tumour in even more detail.

T1: the tumour is limited to the iris
T1a: the tumour is in one quadrant (one-fourth) or less of the iris
T1b: the tumour is in more than one quadrant of the iris
T1c: the tumour is only in the iris, but there is melanomalytic glaucoma. This means that
a build-up of certain cells in the eye blocks the flow of fluid in the eye, causing pressure
T2: the tumour has joined or grown into the ciliary body and/or choroid
T2a: the tumour has joined or grown into the ciliary body and/or choroid with
melanomalytic glaucoma
T3: the tumour has joined or grown into the ciliary body and/or choroid and extends to
the sclera (outer wall of the eyeball)
T3a: the tumour has joined or grown into the ciliary body and/or choroid and extends to
the sclera in association with melanomalytic glaucoma
T4: the tumour has spread to the outside of the eyeball, the optic nerve, or to the eye
socket. This is called extraocular extension
T4a: the tumour has spread is less than 5 millimetres (mm) outside of the eye
T4b: the tumour has spread more than 5 mm outside of the eye

Ciliary body and choroid melanoma
A tumour in the ciliary body and choroid is also classified as T1, T2, T3, or T4 based on the
size of the tumour, which is measured in optic disc diameters or millimetres (mm). The
tumour is measured for both width and height (also called thickness). A tumour is given a
classification according to the table below, based on its width and height.

Doctors may use and refer to this classification, called a category, even more than the stage.
This is because the size and thickness of the tumour (the T) is most important for finding out
a patient's prognosis.

Size Category Classification Table for Ciliary Body and Choroid Melanoma

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thicker than 15 mm</td>
<td>Thicker than 15 mm</td>
</tr>
<tr>
<td>12.1 to 15.0</td>
<td>3</td>
</tr>
<tr>
<td>9.1 to 12.0</td>
<td>3</td>
</tr>
<tr>
<td>6.1 to 9.0</td>
<td>2</td>
</tr>
<tr>
<td>3.1 to 6.0</td>
<td>1</td>
</tr>
<tr>
<td>Less than 3.0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Largest basal diameter (mm)</th>
<th>Less than 3.1 mm</th>
<th>3.1 to 6.0 mm</th>
<th>6.1 to 9.0 mm</th>
<th>9.1 to 12.0 mm</th>
<th>12.1 to 15.0 mm</th>
<th>15.1 to 18.0 mm</th>
<th>Larger than 18.0 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0 mm</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6.0 mm</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>9.0 mm</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Used with permission of the American Joint Committee on Cancer (AJCC), Chicago, Illinois.
T1: the tumour is size category 1
T1a: the tumour is size category 1 and does not involve the ciliary body or other parts of the eye
T1b: the tumour is a category 1 and involves the ciliary body
T1c: the tumour is size category 1 that does not involve the ciliary body. But, there is a very small area (5 mm or less in diameter) of visible spread beyond the eyeball (called extraocular spread)
T1d: the tumour is a size category 1 that involves the ciliary body with extraocular spread less than 5 mm
T2: the tumour is size category 2
T2a: the tumour is size category 2 and does not involve the ciliary body or other parts of the eye
T2b: the tumour is size category 2 and involves the ciliary body
T2c: the tumour is size category 2 that does not involve the ciliary body. But, there is a very small area (5 mm or less in diameter) of visible spread beyond the eyeball
T2d: the tumour is size category 2 that involves the ciliary body with extraocular spread less than 5 mm
T3: the tumour is size category 3
T3a: the tumour is size category 3 and does not involve the ciliary body or other parts of the eye
T3b: the tumour is size category 3 and involves the ciliary body
T3c: The tumour is size category 3 that does not involve the ciliary body. But, there is a very small area (5 mm or less in diameter) of visible spread beyond the eyeball
T3d: the tumour is size category 3 that involves the ciliary body with extraocular spread less than 5 mm
T4: the tumour is size category 4
T4a: the tumour is size category 4 and does not involve the ciliary body or other parts of the eye
T4b: the tumour is size category 4 and involves the ciliary body
T4c: the tumour is size category 4 that does not involve the ciliary body. But, there is a very small area (5 mm or less in diameter) of visible spread beyond the eyeball
T4d: the tumour is size category 4 that involves the ciliary body with extraocular spread less than 5 mm
T4e: the tumour is any size category with extraocular spread of more than 5 mm in diameter

Node. The ‘N’ in the TNM staging system stands for lymph nodes, the tiny, bean-shaped organs that help fight infection. Lymph nodes near the eye are called regional lymph nodes. Lymph nodes in other parts of the body are called distant lymph nodes. N is described the same for melanomas of the iris, ciliary body, and choroid.

NX: the regional lymph nodes cannot be evaluated.
N0 (N plus zero): there is no regional lymph node metastasis.
N1: there is regional lymph node metastasis.

Distant metastasis. The “M” in the TNM system indicates whether the cancer has spread from the eye to other parts of the body. M is described the same for iris, ciliary body, and choroidal melanomas.

MX: distant metastasis cannot be evaluated
M0 (M plus zero): there is no distant metastasis.

Researched and Authored by Prof Michael C Herbst
[D Litt et Phil (Health Studies); D N Ed; M Art et Scien; B A Cur; Dip Occupational Health]
Approved by Ms Elize Joubert, Chief Executive Officer [BA Social Work (cum laude); MA Social Work]
April 2017
M1: there is metastasis to other parts of the body

M1a: there is metastasis to other parts of the body and the largest metastasis is 3 centimetres (cm) or less in diameter

M1b: there is metastasis to other parts of the body and the largest metastasis is between 3.1 cm and 8 cm in diameter

M1c: there is metastasis to other parts of the body and the largest metastasis is larger than 8 cm in diameter

Cancer Stage Grouping
Doctors assign the stage of the cancer by combining the T, N, and M classifications.

Stage I: the tumour is size category 1 and does not involve the ciliary body or other parts of the eye, nor has it spread to the regional lymph nodes or to other areas of the body (T1a, N0, M0)

Stage IIA: the tumour is either a size category 1 that may or may not involve the ciliary body, with or without extraocular extension, or it is a size category 2 that does not involve the ciliary body. There is no spread to the regional lymph nodes or to other areas of the body (T1b, T1c, T1d, or T2a; N0, M0)

Stage IIB: the tumour is either a size category 2 that involves the ciliary body but has not spread beyond the eyeball, or it is a size category 3 that has not spread to the ciliary body or eyeball. It has not spread to the regional lymph nodes or to other areas of the body (T2b or T3a; N0, M0)

Stage IIIA: stage IIIA describes any one of these conditions:
 o a tumour of size category 2 with extraocular spread to a diameter of 5 mm or less, with or without ciliary body involvement that has not spread to the lymph nodes or to other parts of the body (T2c or T2d, N0, M0)
 o a tumour of size category 3 that may or may not involve the ciliary body, with or without extraocular spread to a diameter of 5 mm or less, but hasn’t spread to the lymph nodes or to other parts of the body (T3b or T3c, N0, M0)
 o a tumour of size category 4 that does not involve the ciliary body and has not spread to the lymph nodes or to other parts of the body (T4a, N0, M0)

Stage IIIB: stage IIIB describes any one of these conditions:
 o the tumour is a size category 3 with ciliary body involvement and extraocular spread that has not spread to the lymph nodes or to other parts of the body (T3d, N0, M0).
 o the tumour is a size category 4 with or without ciliary body involvement that may or may have spread outside the eyeball. It has not spread to the regional lymph nodes or to other areas of the body (T4b or T4c, N0, M0).

Stage IIIC: the tumour is a size category 4 that involves the ciliary body and has spread outside the eyeball. However, it has not spread to the regional lymph nodes or to other areas of the body (T4d or T4e; N0, M0).
IV: this stage describes a tumour of any size that has spread to the lymph nodes and/or to other parts of the body outside of the eye (any T, N1, M0; or, any T, any N, M1).

Recurrent Cancer of the Eye
Recurrent cancer is cancer that has come back after treatment. It may return in the eye or in another part of the body. If there is a recurrence, the cancer may need to be staged again (called re-staging) using the system above. (Cancer.Net).

Treatment of Eye Cancer
Most people with eye cancers are referred to a specialist centre for their treatment. These centres provide a range of treatments and offer the one most suitable. For some types of eye cancer there may be only one treatment that is suitable. There may be several that are possible to have. The eye surgeon will explain treatment choices in detail. They will talk through the potential benefits and complications of each before a final decision is made. It may help to get a second opinion from another eye cancer specialist.

Treatment for melanoma of the eyeball
Treatment for eye melanoma is surgery or radiotherapy or both. Whether a patient has surgery or radiotherapy depends on:

- where the tumour is
- the size of the tumour and
- how much it is affecting sight

If the tumour is already preventing the patient from seeing out of the eye, he/she will probably have surgery to remove the eye. This operation is called an enucleation. But if the patient can still see with that eye, the doctor may try to keep the sight and decide to:

- remove just the tumour
- or
- give radiotherapy

Treatment for iris melanoma
This type of cancer can be so slow growing that one does not need treatment, especially if there are no symptoms. The doctor will give request such a patient to report for regular check-ups to make sure the cancer is not getting bigger. If the tumour is growing, or if it is causing symptoms, the patient will normally have one of the following operations to:

- removal of the iris (iridectomy)
- removal of the iris and the tissues around the clear layer covering the front of the eye (the cornea) – this operation is called an iridotrabeculectomy
- removal of the iris and the ciliary body (the muscle that focuses the eye) – this operation is called a iridocyclectomy
- removal of the whole eye (enucleation)
for some iris melanomas the doctor may suggest radiotherapy

Treatment for choroid or ciliary body melanoma
If melanoma of the choroid or ciliary body is not getting bigger the patient may not need treatment straight away. The patient will be requested to report for regular check-ups to make sure the tumour has not started to grow.

If the patient does need treatment, for small melanomas he/she may have one of the following:

- radiotherapy
- surgery to remove just the tumour
- surgery to remove the whole eye (enucleation)
- for medium sized melanomas you may have one of the above treatments or radiotherapy, followed by surgery to remove the eye
- surgery or radiotherapy are the treatments for large melanomas. If you need surgery, this will usually mean removing the eye (enucleation).

Treatment for melanomas that have spread outside the eye
If the tumour has spread outside the eye, to the optic nerve or the eye socket, it is called an extraocular melanoma. The doctor may refer to this as ‘extraocular extension’. It is a more advanced stage and the patient will probably need surgery to remove the eye. This operation is called enucleation. The patient may need further surgery to the eye socket to make sure all the cancer is gone. The patient may have radiotherapy as well.

Treatment for recurrent eye melanoma
If the cancer has come back in the eyeball (intraocular) the patient will most likely have surgery to remove the eye (enucleation). The patient may also have radiotherapy after surgery to kill off any cancer cells left behind.

If the cancer has come back outside the eyeball (extraocular melanoma) the patient may have chemotherapy or biological therapy or both. Clinical trials are looking at how helpful biological therapy may be in treating melanoma of the eye.

Treatment for lymphoma of the eye
Doctors call lymphoma of the eye intraocular lymphoma. They treat intraocular lymphoma in a similar way as other types of non-Hodgkin’s lymphoma. The patient may have radiotherapy, chemotherapy or both. For some types of non-Hodgkin’s lymphoma biological therapy may be used. The patient is not likely to have surgery to treat intraocular lymphoma.

Radiotherapy to treat intraocular lymphoma
To treat lymphoma of the eye the doctor may suggest the patient has external radiotherapy to the eye and brain. This can get rid of the cancer in the eye and also helps to stop it coming back in the brain or spinal cord.
Chemotherapy to treat intraocular lymphoma
Most people with lymphoma of the eye will have chemotherapy. The patient may have chemotherapy injected into the fluid around the spinal cord (intrathecal chemotherapy). The patient might have this treatment along with radiotherapy. (Cancer Research UK).

Prognosis (Outlook)
An important thing to remember for those diagnosed with eye cancer is that every cancer case, no matter how common or rare it may be, is unique. While the tumour of one person may progress very slowly, providing plenty of time to treat the disease, the tumour of another may grow at a much faster- and far more deadly- rate. What it comes down to, essentially, is the makeup of each individual body, and that body’s ability to respond to cancer treatments.

An eye cancer prognosis is generally referred to as the outlook or outcome of eye cancer. An eye cancer prognosis usually takes into account factors, such as the exact type of cancer, how long the cancer has been present, which parts of the eye are affected, the possibility that complications are likely to occur during the treatment period, and the typical rate of recovery, survival rate, and death rate.

As a basic rule, the survival rate of any cancer is far better when the cancer is found and treated in its earliest stages. While many cancers will often have a specific survival rate attached to the different stages of the cancer, the survival rate for eye cancer is predominantly based on an overall history of success, since eye cancers are so rare to begin with. For intraocular melanoma, the most common of eye cancers, the survival rate is currently set at five years. This number is based on cancers which are confined to the eye, and also on the percentage of patients who live at least five years after being diagnosed (studies show that about 84% survive at least 5 years after diagnosed, specifically).

For melanomas which are more advanced and have spread extensively to other parts of the body, however, the 5-year survival rate can drop down anywhere from 15% to 45%, depending on the stage of the cancer. For intraocular lymphoma, which is even more rare, certain studies have shown that if lymphoma is confined to the eye and does not spread, roughly 50% of patients survive five years, or more, after being diagnosed. If the lymphoma has spread, especially to the brain, the survival rate is far lower.

A survival rate should not, by any means, turn an eye cancer prognosis in a death-sentence, though. Again, the information which supplies doctors with a survival rate is often reflective of broad, older studies, and especially if a cancer is very rare, as with eye cancer, the number may not necessarily be all that accurate in relation to a new eye cancer patient’s outlook.

Other factors, such as the exact type of cancer cells which are present, also affect a cancer prognosis. Tumour cells which are long and thin are often less serious and have a better overall cancer prognosis than rounder cells, for instance. Age and overall health, as with many diseases, will also affect the successful treatment of a cancer. (Disease.Com).

Life Changes Following a Diagnosis of Eye Cancer
The following are some of the life changes that can be expected:

Researched and Authored by Prof Michael C Herbst
[D Litt et Phil (Health Studies); D N Ed; M Art et Scien; B A Cur; Dip Occupational Health]
Approved by Ms Elize Joubert, Chief Executive Officer [BA Social Work (cum laude); MA Social Work]
April 2017
o Changes in your sight after eye cancer - Eye cancers do not always cause problems with your sight. It will depend on the type of eye cancer you have. The more advanced the cancer, the more likely it is to affect your sight. Problems can range from very minor changes in your vision to complete loss of sight in one eye.

o Coping practically with sight changes - Sight changes can affect reading, driving, work, and how one gets around. If one has had an eyeball removed (enucleation) the main thing one will notice is that it is a lot harder to judge the distance between objects. One eventually gets used to this and adjust. It is also noticed that one cannot see so well to one side without turning one’s head.

o Changes in your appearance after eye cancer - Surgery that involves the eye may change the way one looks. Modern surgical techniques and reconstructive surgery means that one is less likely to have much scarring, even with very big operations. With time, many scars will fade and be far less visible. So even though one may be aware of them, others may not notice.

o Using an artificial eye - If one has had an eye removed this means adjusting to having an artificial eye. Even if other people don’t notice it, the person him/herself will still be aware of looking different. The change in appearance can be hard to get used to.

o How surgery may affect one’s self-esteem - It can be difficult to accept sudden changes to one’s looks. It is not unusual for people who have had surgery to their face to feel very angry, confused and upset for some time afterwards.

o Changes in your sex life with eye cancer - Any changes in one’s appearance and sight may make one feel less confident about sex. If one has had an eye removed and have an artificial eye one may worry about how this looks to one’s partner. If surgery has affected other parts of one’s face and one is not happy with how he/she looks, further surgery may be of help to correct this.

(Cancer Research UK).

About Clinical Trials
Clinical trials are research studies that involve people. These studies test new ways to prevent, detect, diagnose, or treat diseases. People who take part in cancer clinical trials have an opportunity to contribute to scientists’ knowledge about cancer and to help in the development of improved cancer treatments. They also receive state-of-the-art care from cancer experts.

Types of Clinical Trials
Cancer clinical trials differ according to their primary purpose. They include the following types:

Treatment - these trials test the effectiveness of new treatments or new ways of using current treatments in people who have cancer. The treatments tested may include new drugs or new combinations of currently used drugs, new surgery or radiation therapy techniques, and vaccines or other treatments that stimulate a person’s immune system to fight cancer. Combinations of different treatment types may also be tested in these trials.
Prevention - these trials test new interventions that may lower the risk of developing certain types of cancer. Most cancer prevention trials involve healthy people who have not had cancer; however, they often only include people who have a higher than average risk of developing a specific type of cancer. Some cancer prevention trials involve people who have had cancer in the past; these trials test interventions that may help prevent the return (recurrence) of the original cancer or reduce the chance of developing a new type of cancer.

Screening - these trials test new ways of finding cancer early. When cancer is found early, it may be easier to treat and there may be a better chance of long-term survival. Cancer screening trials usually involve people who do not have any signs or symptoms of cancer. However, participation in these trials is often limited to people who have a higher than average risk of developing a certain type of cancer because they have a family history of that type of cancer or they have a history of exposure to cancer-causing substances (e.g., cigarette smoke).

Diagnostic - these trials study new tests or procedures that may help identify, or diagnose, cancer more accurately. Diagnostic trials usually involve people who have some signs or symptoms of cancer.

Quality of life or supportive care - these trials focus on the comfort and quality of life of cancer patients and cancer survivors. New ways to decrease the number or severity of side effects of cancer or its treatment are often studied in these trials. How a specific type of cancer or its treatment affects a person’s everyday life may also be studied.

Where Clinical Trials are Conducted
Cancer clinical trials take place in cities and towns in doctors’ offices, cancer centres and other medical centres, community hospitals and clinics. A single trial may take place at one or two specialised medical centres only or at hundreds of offices, hospitals, and centres.

Each clinical trial is managed by a research team that can include doctors, nurses, research assistants, data analysts, and other specialists. The research team works closely with other health professionals, including other doctors and nurses, laboratory technicians, pharmacists, dieticians, and social workers, to provide medical and supportive care to people who take part in a clinical trial.

Research Team
The research team closely monitors the health of people taking part in the clinical trial and gives them specific instructions when necessary. To ensure the reliability of the trial’s results, it is important for the participants to follow the research team’s instructions. The instructions may include keeping logs or answering questionnaires. The research team may also seek to contact the participants regularly after the trial ends to get updates on their health.

Clinical Trial Protocol
Every clinical trial has a protocol, or action plan, that describes what will be done in the trial, how the trial will be conducted, and why each part of the trial is necessary. The protocol also includes guidelines for who can and cannot participate in the trial. These guidelines, called eligibility criteria, describe the characteristics that all interested people must have before they can take part in the trial. Eligibility criteria can include age, sex, medical history, and current health status. Eligibility criteria for cancer treatment trials often include the type and stage of cancer, as well as the type(s) of cancer treatment already received.
Enrolling people who have similar characteristics helps ensure that the outcome of a trial is due to the intervention being tested and not to other factors. In this way, eligibility criteria help researchers obtain the most accurate and meaningful results possible.

National and International Regulations
National and international regulations and policies have been developed to help ensure that research involving people is conducted according to strict scientific and ethical principles. In these regulations and policies, people who participate in research are usually referred to as “human subjects.”

Informed Consent
Informed consent is a process through which people learn the important facts about a clinical trial to help them decide whether or not to take part in it, and continue to learn new information about the trial that helps them decide whether or not to continue participating in it.

During the first part of the informed consent process, people are given detailed information about a trial, including information about the purpose of the trial, the tests and other procedures that will be required, and the possible benefits and harms of taking part in the trial. Besides talking with a doctor or nurse, potential trial participants are given a form, called an informed consent form, that provides information about the trial in writing. People who agree to take part in the trial are asked to sign the form. However, signing this form does not mean that a person must remain in the trial. Anyone can choose to leave a trial at any time—either before it starts or at any time during the trial or during the follow-up period. It is important for people who decide to leave a trial to get information from the research team about how to leave the trial safely.

The informed consent process continues throughout a trial. If new benefits, risks, or side effects are discovered during the course of a trial, the researchers must inform the participants so they can decide whether or not they want to continue to take part in the trial. In some cases, participants who want to continue to take part in a trial may be asked to sign a new informed consent form.

New interventions are often studied in a stepwise fashion, with each step representing a different “phase” in the clinical research process. The following phases are used for cancer treatment trials:

Phases of a Clinical Trial
Phase 0. These trials represent the earliest step in testing new treatments in humans. In a phase 0 trial, a very small dose of a chemical or biologic agent is given to a small number of people (approximately 10-15) to gather preliminary information about how the agent is processed by the body (pharmacokinetics) and how the agent affects the body (pharmacodynamics). Because the agents are given in such small amounts, no information is obtained about their safety or effectiveness in treating cancer. Phase 0 trials are also called micro-dosing studies, exploratory Investigational New Drug (IND) trials, or early phase I trials. The people who take part in these trials usually have advanced disease, and no known, effective treatment options are available to them.
Phase I (also called phase 1). These trials are conducted mainly to evaluate the safety of chemical or biologic agents or other types of interventions (e.g., a new radiation therapy technique). They help determine the maximum dose that can be given safely (also known as the maximum tolerated dose) and whether an intervention causes harmful side effects. Phase I trials enrol small numbers of people (20 or more) who have advanced cancer that cannot be treated effectively with standard (usual) treatments or for which no standard treatment exists. Although evaluating the effectiveness of interventions is not a primary goal of these trials, doctors do look for evidence that the interventions might be useful as treatments.

Phase II (also called phase 2). These trials test the effectiveness of interventions in people who have a specific type of cancer or related cancers. They also continue to look at the safety of interventions. Phase II trials usually enrol fewer than 100 people but may include as many as 300. The people who participate in phase II trials may or may not have been treated previously with standard therapy for their type of cancer. If a person has been treated previously, their eligibility to participate in a specific trial may depend on the type and amount of prior treatment they received. Although phase II trials can give some indication of whether or not an intervention works, they are almost never designed to show whether an intervention is better than standard therapy.

Phase III (also called phase 3). These trials compare the effectiveness of a new intervention, or new use of an existing intervention, with the current standard of care (usual treatment) for a particular type of cancer. Phase III trials also examine how the side effects of the new intervention compare with those of the usual treatment. If the new intervention is more effective than the usual treatment and/or is easier to tolerate, it may become the new standard of care.

Phase III trials usually involve large groups of people (100 to several thousand), who are randomly assigned to one of two treatment groups, or “trial arms”: (1) a control group, in which everyone in the group receives usual treatment for their type of cancer, or 2) an investigational or experimental group, in which everyone in the group receives the new intervention or new use of an existing intervention. The trial participants are assigned to their individual groups by random assignment, or randomisation. Randomisation helps ensure that the groups have similar characteristics. This balance is necessary so the researchers can have confidence that any differences they observe in how the two groups respond to the treatments they receive are due to the treatments and not to other differences between the groups.

Randomisation is usually done by a computer program to ensure that human choices do not influence the assignment to groups. The trial participants cannot request to be in a particular group, and the researchers cannot influence how people are assigned to the groups. Usually, neither the participants nor their doctors know what treatment the participants are receiving.

People who participate in phase III trials may or may not have been treated previously. If they have been treated previously, their eligibility to participate in a specific trial may depend on the type and the amount of prior treatment they received.

In most cases, an intervention will move into phase III testing only after it has shown promise in phase I and phase II trials.
Phase IV (also called phase 4). These trials further evaluate the effectiveness and long-term safety of drugs or other interventions. They usually take place after a drug or intervention has been approved by the medicine regulatory office for standard use. Several hundred to several thousand people may take part in a phase IV trial. These trials are also known as post-marketing surveillance trials. They are generally sponsored by drug companies.

Sometimes clinical trial phases may be combined (e.g., phase I/II or phase II/III trials) to minimize the risks to participants and/or to allow faster development of a new intervention.

Although treatment trials are always assigned a phase, other clinical trials (e.g., screening, prevention, diagnostic, and quality-of-life trials) may not be labelled this way.

Use of Placebos
The use of placebos as comparison or “control” interventions in cancer treatment trials is rare. If a placebo is used by itself, it is because no standard treatment exists. In this case, a trial would compare the effects of a new treatment with the effects of a placebo. More often, however, placebos are given along with a standard treatment. For example, a trial might compare the effects of a standard treatment plus a new treatment with the effects of the same standard treatment plus a placebo.

Possible benefits of taking part in a clinical trial
The benefits of participating in a clinical trial include the following:

- Trial participants have access to promising new interventions that are generally not available outside of a clinical trial.
- The intervention being studied may be more effective than standard therapy. If it is more effective, trial participants may be the first to benefit from it.
- Trial participants receive regular and careful medical attention from a research team that includes doctors, nurses, and other health professionals.
- The results of the trial may help other people who need cancer treatment in the future.
- Trial participants are helping scientists learn more about cancer (e.g., how it grows, how it acts, and what influences its growth and spread).

Potential harms associated with taking part in a clinical trial
The potential harms of participating in a clinical trial include the following:

- The new intervention being studied may not be better than standard therapy, or it may have harmful side effects that doctors do not expect or that are worse than those associated with standard therapy.
- Trial participants may be required to make more visits to the doctor than they would if they were not in a clinical trial and/or may need to travel farther for those visits.

Correlative research studies, and how they are related to clinical trials
In addition to answering questions about the effectiveness of new interventions, clinical trials provide the opportunity for additional research. These additional research studies, called correlative or ancillary studies, may use blood, tumour, or other tissue specimens (also known as 'biospecimens') obtained from trial participants before, during, or after treatment.
For example, the molecular characteristics of tumour specimens collected during a trial might be analysed to see if there is a relationship between the presence of a certain gene mutation or the amount of a specific protein and how trial participants responded to the treatment they received. Information obtained from these types of studies could lead to more accurate predictions about how individual patients will respond to certain cancer treatments, improved ways of finding cancer earlier, new methods of identifying people who have an increased risk of cancer, and new approaches to try to prevent cancer.

Clinical trial participants must give their permission before biospecimens obtained from them can be used for research purposes.

When a clinical trial is over

After a clinical trial is completed, the researchers look carefully at the data collected during the trial to understand the meaning of the findings and to plan further research. After a phase I or phase II trial, the researchers decide whether or not to move on to the next phase or stop testing the intervention because it was not safe or effective. When a phase III trial is completed, the researchers analyse the data to determine whether the results have medical importance and, if so, whether the tested intervention could become the new standard of care.

The results of clinical trials are often published in peer-reviewed scientific journals. Peer review is a process by which cancer research experts not associated with a trial review the study report before it is published to make sure that the data are sound, the data analysis was performed correctly, and the conclusions are appropriate. If the results are particularly important, they may be reported by the media and discussed at a scientific meeting and by patient advocacy groups before they are published in a journal. Once a new intervention has proven safe and effective in a clinical trial, it may become a new standard of care. (National Cancer Institute).

Medical Disclaimer

This Fact Sheet is intended to provide general information only and, as such, should not be considered as a substitute for advice, medically or otherwise, covering any specific situation. Users should seek appropriate advice before taking or refraining from taking any action in reliance on any information contained in this Fact Sheet. So far as permissible by law, the Cancer Association of South Africa (CANSA) does not accept any liability to any person (or his/her dependants/estate/heirs) relating to the use of any information contained in this Fact Sheet.

Whilst the Cancer Association of South Africa (CANSA) has taken every precaution in compiling this Fact Sheet, neither it, nor any contributor(s) to this Fact Sheet can be held responsible for any action (or the lack thereof) taken by any person or organisation wherever they shall be based, as a result, direct or otherwise, of information contained in, or accessed through, this Fact Sheet.
Sources and References

American Cancer Society
http://www.cancer.org/cancer/eyecancer/detailedguide/eye-cancer-diagnosis

Cancer.Net
http://www.cancer.net/cancer-types/lacrimal-gland-tumor
http://www.cancer.net/cancer-types/eye-cancer/staging-and-grading

Cancer Research UK
http://www.cancerresearchuk.org/cancer-help/type/eye-cancer/about/types-of-eye-cancer
http://www.cancerresearchuk.org/cancer-help/type/eye-cancer/diagnosis/eye-cancer-tests

Disease.Com

Eye 1
http://www.bing.com/images/search?q=free+diagrams+eye&view=detail&id=D971B7324556C9D61B15247852EBA349BAF0B5D1&qpvt=free+diagrams+eye&FORM=IDFRIR

Eye 2

Free Medical Textbook
http://medtextfree.wordpress.com/2011/01/20/chapter-150-medulloepithelioma/

Gonioscopy Lens
http://www.reviewofoptometry.com/content/d/product_review/c/15438/dnnprintmode/true/?skinsrc=%5B%5Dskins/ro2009/pageprint&containersrc=%5B%5Dcontainers/ro2009/simple

Indirect Ophthalmoscope
http://howmed.net/ophthalmology/protocol-of-examination-of-indirect-ophthalmoscopy/

Intelihealth.Com
http://www.intelihealth.com/IH/ihtPrint/WSIHW000/9339/10611.html

Johns Hopkins Medicine
http://www.hopkinsmedicine.org/wilmer/conditions/tumors.html

MacMillan Cancer Support
http://www.macmillan.org.uk/Cancerinformation/Cancertypes/Eye/Melanomaoftheeye.aspx

Mayo Clinic
http://www.mayoclinic.com/print/eye-melanoma/DS00707/METHOD=print&DSECTION=all
MD Anderson Cancer Center

Medline Plus
http://www.nlm.nih.gov/medlineplus/eyecancer.html#cat26

Merck Manual
http://www.merckmanuals.com/home/print/eye_disorders/retinal_disorders/cancers_affecting_the_retina.html

National Cancer Institute
http://www.cancer.gov/clinicaltrials/learningabout/what-are-clinical-trials

Ophthalmoscope
https://en.wikipedia.org/wiki/Ophthalmoscopy

Retinoblastoma Childhood Eye Cancer Trust

University of Iowa Clinics and Hospitals
http://www.uihealthcare.org/EyeCancer/

Wikipedia
http://en.wikipedia.org/wiki/Human_eye