Rooibos (Aspalathus linearis), honeybush (Cyclopia intermedia) and cancer bush (Sutherlandia frutescens subsp. microphylla) protect against tobacco-specific mutagenesis in vitro

W.C.A. Gelderblom a,b,⁎, E. Joubert c,d, K. Gamieldien e, L. Sissing f, C.J. Malherbe c, G. Maritz f

a Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 19060, Bellville 7535, South Africa
b Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
c Post-Harvest and Wine Technology Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
d Department of Food Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
e Department of Emergency Medical Sciences, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa
f Department of Medical Biosciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa

A R T I C L E I N F O
Available online 22 June 2016
Edited by D De Beer
Keywords:
Antimutagenesis
Tobacco-specific mutagens
Herbal teas
Cancer bush

A B S T R A C T
Antimutagenesis studies against the tobacco-specific mutagens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-oxide, 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), were conducted using hot water aqueous extracts of rooibos (Aspalathus linearis), honeybush (Cyclopia intermedia), and cancer bush (Sutherlandia frutescens). Aqueous extracts of both “fermented” and “unfermented” (green) rooibos and honeybush were included, while extracts of green and black teas (Camellia sinensis) served as benchmarks. A polyphenol-enriched methanol extract of unfermented rooibos (RgM) was included to further elucidate the possible role of rooibos polyphenols. Studies were performed in the presence of the metabolic activation against Salmonella typhimurium tester strain TA1535, using the standard plate incorporation and micro-suspension, pre-incubation assays. The mutagenic effects of NNK against the strain TA1535 was best demonstrated using the standard plate incorporation assay, while a higher mutagenicity was demonstrated for NNAL using the micro-suspension, pre-incubation method. Black tea and RgM exhibited the highest protection against NNK-induced mutagenesis followed by the aqueous extracts of rooibos ≥ green tea ≥ honeybush ≥ cancer bush. Black tea, green tea, RgM and unfermented rooibos were the most effective against NNAL-induced mutagenesis, followed by fermented rooibos. The two honeybush extracts exhibited similar, but the weakest protective response. When considering the amount of total polyphenols (TTP) incorporated in the plate incorporation assay, cancer bush exhibited similar protection to that of fermented and unfermented honeybush against NNK mutagenesis. The involvement of specific polyphenol-cytochrome P450 (CYP450) interactions is likely to be involved in the protection against tobacco-related mutagenesis. Polyphenol constituents of rooibos, honeybush and cancer bush could play an important role in the protection against mutagenesis induced by the major tobacco-specific carcinogens.

1. Introduction

Nicotine is arguably responsible for more adverse health consequences when considering the estimated 3500 different compounds found in tobacco smoke (Zevin et al., 1998). It is composed of pyridine and pyrrolidine rings that are extensively metabolised in the liver into various major and minor metabolites. Oxidation accounts for 70–80% of the metabolism of nicotine resulting in the formation of cotinine via 5'-hydroxylation predominantly catalysed by cytochrome P450 2A6 (CYP2A6) (Yamazaki et al., 1999). Additionally, studies showed that CYP2A6 catalyses 2'-hydroxylation of nicotine yielding 4-(methylamino)-1-(3-pyridyl)-1-butanone, an aminoketone that, through a process of nitrosation, is converted to the potent tobacco-specific lung carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) (Hecht et al., 2000). The major metabolic pathway of NNK in many tissues is the reduction of the carbonyl producing N-oxide, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) (Hecht et al., 1997). Both NNK and NNAL are metabolically activated via similar pathways involving tissue specific CYPs, which proceed via the α-hydroxylation of either the methyl or methylene carbon. NNAL and NNK administered in the drinking water of rats produced lung tumours in 80% and 90% of the animals, respectively (Rivenson et al., 1988). The metabolic conversion of nicotine via 2'-hydroxylation and
the subsequent formation of NNK, therefore links nicotine to the development of lung cancer. NNK exhibits a mutagenic response against strains TA100, TA1535 (Padma et al., 1989) and TA7004 following metabolic activation while it lacks mutagenicity against strains TA98 and TA1538 (Yim and Hee, 2001). In a study employing a microsuspension assay to conduct a modified mutagenicity assay, NNAL was reported to be mutagenic against strain TA1535 after metabolic activation (Brown et al., 2001). The mutagenicity/genotoxic and carcinogenic effects of NNK are closely correlated and a similar relationship probably exists in humans (Hecht et al., 1997).

The chemopreventive properties of tea (Camellia sinensis) against genotoxic carcinogens, specifically tobacco-specific carcinogens, have been reported and several distinct mechanisms have been characterised (Weisburger and Chung, 2002). These include the inhibition of the metabolic activation to form the reactive DNA intermediates, increase in activity of enzymes involved in the detoxification pathways and regulation of transcription factors controlling the activity of growth factors associated with the growth of neoplastic cells. The polyphenol constituents of green and black tea are also effective inhibitors of oxidative DNA damage leading to the formation of adducts such as 8-hydroxydeoxyguanine. These teas inhibit lung tumorigenesis in mice and rats induced by NNK and their major polyphenols, i.e. epigallocatechin gallate (ECG) of green tea and theaflavins and thearubigins of black tea, as well as caffeine have been implicated as the major chemopreventive constituents (Chung, 1999). Antimutagenic properties have also been demonstrated for the South African herbal teas, rooibos (Aspalathus linearis) and honeybush (Cyclopia species) (as reviewed by Joubert et al., 2008a), but no studies have been performed on their ability to inhibit mutagenesis induced by tobacco-specific mutagens. In addition, Sutherlandia frutescens, commonly known as the cancer bush, is another indigenous South African plant of interest. Leaf decoctions or infusions are used to treat a number of different diseases, including cancer (Van Wyk and Albrecht, 2008). The abovementioned plants represent unique chemical diversity, differing from those of honeybush, xanthones and thearubigins of black tea, as well as caffeine have been implicated as the major chemopreventive constituents (Avula et al., 2010; Fu et al., 2010). Sutherlandiosides A and C were quantified in terms of flavonol glycosides with the same aglycones as sutherlandins A and B, and sutherlandins C and D, respectively (Avula et al., 2010; Fu et al., 2010). Sutherlandiosides A and C were quantified in terms of sutherlandioside B and D, respectively.

2. Material and methods

2.1. Chemicals

Nicotine [54-11-5] and trifluoroacetic acid were purchased from Merck Chemicals (Pty) Ltd. (Cape Town, South Africa) and 4-
({methylene}trinitrosoamo)-1-{(3-pyridyl)-1-butane} (NNK) [64091-91-4] and N-oxide, 4-{(methylene}trinitrosoamo)-1-{(3-pyridyl)-1-butanol (NNAL) [76014-81-8] from Toronto Research Chemicals Inc. (Ontario, Canada). Nutrient Agar and Nutrient Broth No. 2 were purchased from Difco Laboratories (Detroit, USA) and Oxoid (Hampshire, UK), respectively. The S. typhimurium strain TA1535 was kindly donated by Dr. B.N. Ames (Berkley, USA). Dimethylsulfoxide and acetonitrile ‘Far UV’ for gradient analysis were obtained from BDH Laboratories. Calibration standards for HPLC analysis of cancer bush were supplied by PlantamedChem (Giessen, Germany; rutin), Extrasynthese (Genay, France; kaempferol–3-rutinoside), Phytolab (Vestenbergsgreuth, Germany; sutherlandioside B and Sutherlandioside D).

2.2. Plant material and extracts

Super grade fermented and unfermented rooibos (A. linearis) were supplied by Rooibos Ltd. (Clanwilliam, South Africa). Fermented and unfermented honeybush (Cyclopia intermedia) were processed according to a standard procedure (Le Roux et al., 2008), using the same batch of fresh plant material. Prior to extraction the coarsely cut, dried honeybush plant material was sieved to remove the coarse stems. Black tea (C. sinensis), a blend of locally produced African and Sri Lankan teas (http://www.five-roses.com/about-us/default.htm), was obtained from a commercial retail outlet (Cape Town, South Africa). Vital Health Foods (Kuilsriver, South Africa) supplied green tea (C. sinensis), imported from China, while Parceval Pharmaceuticals (Wellington, South Africa) supplied cancer bush, i.e. plant material of a wild type S. frutescens subsp. microphylla.

All aqueous extracts and the methanol extract of unfermented rooibos were prepared as described by Sissing et al. (2011). Briefly, the aqueous extracts were prepared by steeping the dried plant material in freshly-boiled water (10 g/1000 mL) for 30 min, followed by filtration and freeze-drying. For preparation of the methanol extract of unfermented rooibos (RgM) the dried plant material was defatted with chloroform whereafter it was extracted exhaustively with methanol. The methanol was evaporated under vacuum at 40 °C to obtain a dry residue. The latter residue and the freeze-dried extracts were stored desiccated at 4 °C in the dark.

2.3. Chemical analysis of plant extracts

The total polyphenol (TPP) content of the extracts was determined by using the scaled-down Folin-Ciocalteu method with gallic acid as the standard (Singleton and Rossi, 1965). The TPP of the aqueous extracts of rooibos and honeybush, as well as the major monomeric polyphenol constituents of rooibos and honeybush extracts were reported previously (Sissing et al., 2011). For comparative purposes in the mutagenesis assay, the TPP content was used to “standardise” the different types of extracts as they contain diverse phenolic compounds. The presence of sutherlandins (flavonol glycosides) and sutherlandiosides (cycloartane glycosides) was confirmed by LC–MS according to the method of Albrecht et al. (2012) (Supplementary data in Appendix: Table A.1, Figs. A.1 and A.2).

The major sutherlandins and sutherlandiosides were then quantified, using an HPLC-DAD method, run on an Agilent 1200 system consisting of a quaternary pump with incorporated in-line degasser, autosampler, column thermostat, and diode-array detector (DAD), controlled by OpenLabs CDS Chemstation software (Agilent Technologies, Waldbronn, Germany). Separation was achieved at 1 mL/min and 35 °C on an Agilent Zorbax SB (100 x 4.6 mm; 1.8 μm particle size) column (Agilent), protected by a guard cartridge of the same stationary phase and an AQUITY UPLC guard filter (Waters, Milford, MA, USA). The gradient solvent system consisted of acetonitrile (solvent A) and 0.02% trifluoroacetic acid (solvent B). A multilinear gradient was performed as follows: 5–12% A (0–5 min), 12–24% A (5–15 min), 24–65% A (15–46 min), 65–100% B (46–51 min), reconditioning of 100–5% B (51–55 min) and 5% B isocratic (56–66 min).

Calibration curves were set up for all standards to test the linearity of the ultraviolet (UV)–DAD response. UV spectra were recorded between 200 and 700 nm with selective wavelength monitoring at 225 and 260 nm for quantification of sutherlandiosides and sutherlandins, respectively. Where an authentic standard was not available, results were expressed in terms of the equivalents of the calibration standard. Rutin and kaempferol–3-rutinoside were selected as standards as they are flavonol glycosides with the same aglycones as sutherlandins A and B, and sutherlandins C and D, respectively (Avula et al., 2010; Fu et al., 2010). Sutherlandiosides A and C were quantified in terms of sutherlandioside B and D, respectively.
2.4. Mutagenicity assays

The mutagenicity of nicotine, NNK and NNAL was assessed in the S. typhimurium mutagenicity assay using the standard plate incorporation technique against tester strain TA1535 (Maron and Ames, 1983). Mutagenicity of the test compounds was also conducted using the micro-suspension pre-incubation assay according to a modified S. typhimurium mutagenicity assay. Plates (five replicates for each sample) were incubated at 37 °C for 48 h where after the histidine revertant colonies were scored using a Quebec Colony Counter (American Optical Corp., Buffalo, New York).

2.4.1. Standard plate incorporation assay

Varying concentrations (1, 2 and 4 mM) of the mutagens were tested against the TA1535 strain. Each assay required 0.1 mL of each mutagen concentration, 0.1 mL of an overnight bacteria culture and 0.5 mL S-9 mix (containing 5% S-9 liver homogenate) added in the top agar layer (2 mL). The mixture was vortexed, poured and dispersed on minimal glucose agar plates incubated at 37 °C for 48 h and the number of histidine revertant colonies recorded. The liver S-9 homogenate (0.77 nmol cytochrome P450/mg protein) was prepared by inducing male Fisher rats (ca. 200 g each) with Aroclor-1245 as previously described (Maron and Ames, 1983). The control plates contained the bacteria, S-9 mix and DMSO (solvent control) or water (for NNAL assay) to monitor the spontaneous revertant counts. NNAL was dissolved in water to prevent the inhibitory effects of DMSO on its bioactivation.

2.4.2. Pre-incubation assay

The overnight bacterial culture in nutrient broth was centrifuged aseptically at 10,000 × g for 10 min to harvest the bacteria, followed by their re-suspension in phosphate buffer (0.02 M, pH 7.4) to yield a five-fold cell concentration. The micro-suspension, consisting of 0.1 mL bacteria strain TA1535, 0.1 mL S-9 mix (final concentration of 5 or 10%), and 0.1 mL mutagen (NNK or NNAL), was incubated for 90 min at 37 °C. The top agar was added to the micro-suspension mixture and dispersed onto the minimal glucose agar plates. Control treatments contained the solvent control (DMSO or water), the tester strain and S-9 mix. The plates were incubated as described above.

2.5. Antimutagenicity assay

Stock solutions of the different freeze-dried extracts, except that of cancer bush, were prepared in distilled water at concentrations of 0.5, 1 and 2% (m/v), filtered sterilised (0.45 μm) and incorporated (0.1 mL) in the mutagenicity assay. RgM was dissolved in DMSO, while the cancer bush aqueous extract was prepared at concentrations of 5 and 10% (m/v) using distilled water in order to obtain TPP levels comparable to that of the rooibos and honeybush extracts. All the extracts were tested for cytotoxic effects against the TA1535 strain by monitoring the effect on the spontaneous revertant count. NNK was dissolved in DMSO and dispersed onto the minimal glucose agar plates. Control treatments contained the solvent control (DMSO or water), the tester strain and S-9 mix. The plates were incubated as described above.

2.6. Statistical analysis

Data were analysed by two-way ANOVA and statistical differences between means determined by using the Tukey’s Studentised range test. Data displaying unequal variances were tested using the non-parametric Tukey-type test. P < 0.05 was deemed as significant. Correlations were conducted using the Pearson correlation coefficient.

3. Results

3.1. Chemical characterisation of extracts

The content values of the major phenolic compounds in rooibos and honeybush extracts have been previously provided by Sissing et al. (2011). Briefly, the major flavonoids in rooibos were aspalathin, nothofagin, iso-orientin and orientin. The unfermented rooibos and RgM extracts also contained substantial levels of quercetin glycosides. Methanol extraction was effective in increasing the total polyphenol content of the extract, as well as its flavone aglycone content, specifically that of luteolin. Even with this increase luteolin was present at only 0.12% considering that its glucosides, orientin and iso-orientin were present at >1%. The xanthones, mangiferin and isomangiferin were the major phenolic compounds in honeybush extract. The low hesperidin content is attributed to removal of most of the stems before extraction. De Beer et al. (2012), analysing extracts of Cyclopia subternata, showed that hesperidin content is higher in the stems than leaves. Notably is the lower phenolic content of rooibos and honeybush extracts prepared from fermented plant material. “Fermentation” reduced the dihydrochalcone and xanthone content of rooibos and honeybush, respectively (Joubert et al., 2008a). The major compound in cancer bush extract was the cycloartane glycoside, sutherlandioside B (2.95%). The sutherlandiosides and sutherlandins comprised 3.81% and 3.21% of the extract, respectively (Table 1). The total polyphenol content of the extracts differed substantially with the RgM and the cancer bush extract having the highest and lowest TPP content, respectively (Table 2).

3.2. Mutagenicity of tobacco carcinogens

Nicotine was not mutagenic against the bacterial strain TA1535 in the standard plate incorporation assay or pre-incubation assay at any of the concentrations tested (Table 3). NNK exhibited a mutagenic response in both assays (P < 0.05), yielding a much higher and a dose response effect in the plate incorporation assay. In the pre-incubation assay there was a significant increase in the mutagenic response when the S-9 concentration was increased from 5 to 10%. NNAL only exhibited a weak mutagenic response at the highest concentration of 4 mM when using the plate incorporation assay. In the pre-incubation assay NNAL exhibited a weak mutagenic response at all the concentrations although no dose response effects were noticed. Increasing the level of S-9 concentration also did not alter the mutagenic response.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Content (mg/100 g extract)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sutherlandin A<sup>a</sup></td>
<td>706</td>
</tr>
<tr>
<td>Sutherlandin B<sup>b</sup></td>
<td>913</td>
</tr>
<tr>
<td>Sutherlandin C<sup>c</sup></td>
<td>902</td>
</tr>
<tr>
<td>Sutherlandin D<sup>c</sup></td>
<td>691</td>
</tr>
<tr>
<td>Sutherlandioside A<sup>d</sup></td>
<td>49</td>
</tr>
<tr>
<td>Sutherlandioside B</td>
<td>2985</td>
</tr>
<tr>
<td>Sutherlandioside C</td>
<td>166</td>
</tr>
<tr>
<td>Sutherlandioside D</td>
<td>611</td>
</tr>
</tbody>
</table>

^a Sutherlandins A and B, containing a quercetin aglycone, were quantified in terms of quercetin-3-rutinoside (rutin).
^b Sutherlandins C and D, containing a kaempferol aglycone, were quantified in terms of kaempferol-3-rutinoside.
^c Sutherlandiosides A and C were quantified in terms of sutherlandiosides B and D equivalents, respectively.

Table 1 Major phytochemical constituents of cancer bush (Sutherlandia frutescens) aqueous extract.
Table 2
Inhibition of aqueous herbal plant and tea extracts against NNK and NNAL utilising the plate incorporation and pre-incubation assay techniques with S. typhimurium strain TA1535. Values in parentheses are the mean total polyphenol content (mg gallic acid equivalents) of each extract per plate.

<table>
<thead>
<tr>
<th>Herbal extracts</th>
<th>TPP content (mg gallic equiv/100 mg extract)</th>
<th>Plate incorporation assay</th>
<th>Pre-incubation assay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% inhibition (NNK: 1 mM)</td>
<td>% inhibition (NNK: 1 mM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5% 1% 2%</td>
<td>0.5% 1% 2%</td>
</tr>
<tr>
<td>Rooibos (f)</td>
<td>31.75 ± 1.97a</td>
<td>50.3 ± 4.8a (0.16)</td>
<td>84.3 ± 3.3a (0.32)</td>
</tr>
<tr>
<td>Rooibos (uf)</td>
<td>33.26 ± 3.03a</td>
<td>63.2 ± 6.2b (0.17)</td>
<td>83.8 ± 4.3b (0.33)</td>
</tr>
<tr>
<td>Honeybush (f)</td>
<td>15.67 ± 2.68b</td>
<td>22.2 ± 3.9c (0.08)</td>
<td>47.9 ± 5.0b (0.16)</td>
</tr>
<tr>
<td>Honeybush (uf)</td>
<td>29.40 ± 3.45 ac</td>
<td>35.8 ± 5.4d (0.15)</td>
<td>57.0 ± 10.2b (0.29)</td>
</tr>
<tr>
<td>Green</td>
<td>23.27 ± 3.39c</td>
<td>39.1 ± 7.6d (0.12)</td>
<td>56.0 ± 7.0b (0.23)</td>
</tr>
<tr>
<td>Black</td>
<td>26.65 ± 1.95ca</td>
<td>88.7 ± 4.3e (0.13)</td>
<td>98.1 ± 2.3c (0.27)</td>
</tr>
<tr>
<td>RgM (uf)</td>
<td>45.62 ± 17d</td>
<td>88.1 ± 6.2e (0.23)</td>
<td>98.6 ± 1.1c (0.46)</td>
</tr>
<tr>
<td>Cancer bush</td>
<td>3.77 ± 0.19d</td>
<td>35.6 ± 4.7* (0.19)</td>
<td>61.3 ± 7.1* (0.38)</td>
</tr>
</tbody>
</table>

Values (% inhibition) are means ± STD in the columns followed by the same letter do not differ significantly, if letters differ then P < 0.05. Values in a row followed by the same letter (superscript) do not differ significantly, if letters differ then P < 0.05 within each assay. Fermented (f); unfermented (uf); RgM: methanol extract of unfermented rooibos. Not determined (nd).

3.3. Antimutagenicity of plant and tea extracts

Dose response effects and inter extract comparisons: no cytotoxic effects were noticed at the concentrations of the herbal extracts tested when considering the background lawn growth and spontaneous revertant count. Dose response inhibitory effects were noticed against NNK-induced mutagenesis using both the plate incorporation and pre-incubation assays (Table 2). In the plate incorporation assay, unfermented rooibos exhibited a significantly higher protection at 0.5% compared to its fermented counterpart, while no difference was observed at higher concentrations, implying a threshold effect. In contrast, in the pre-incubation assay fermented rooibos exhibited a higher protective effect. Fermented honeybush showed a weaker protection than its unfermented counterpart in the plate incorporation assay, while no significant difference was observed in the pre-incubation assay. Green tea exhibited a weaker protection than black tea in both assays. A far weaker protection was noticed for the cancer bush extract at 5 to 10% with an approximate 60% inhibition obtained at the higher concentration.

At 0.5% concentration, black tea, and RgM displayed the highest percentage inhibition (P < 0.05) against NNK using the plate incorporation assay. Both rooibos extracts showed a higher (P < 0.05) protection than unfermented honeybush while green tea and fermented honeybush exhibited the weakest protection. A similar order of protection was noticed at the 1% concentration level while at the 2% level the tea and herbal tea extracts except fermented honeybush completely inhibited the mutagenic response of NNK. In the pre-incubation assay black tea and fermented rooibos exhibited the highest, but similar protective response at the 0.5% concentration, followed by the RgM extract. Unfermented rooibos, both honeybush extracts and green tea exhibited a similar but weaker protection. However, at the 1% level green tea exhibited a similar protection to black tea and rooibos (fermented and RgM) followed by unfermented rooibos, while the honeybush extracts exhibited a weaker protection.

Differences existed between the various extracts when considering the amount of TPP included in the plate incorporation assay at the levels tested. Rooibos TPP tended to be less active when compared to black tea, but they were similar in activity to that of green tea. Comparable antimutagenic properties of fermented (1%) and unfermented (0.5%) honeybush are noticed when considering the TPP levels incorporated per plate. In this regard the antimutagenic activity of the cancer bush extract (10%) against NNK-induced mutagenesis was slightly lower when compared to that of fermented (1%) and unfermented (0.5%) honeybush. However, rooibos, green tea, and black tea exhibited a far higher protection at a 0.5% level at the same TPP level. The TPP level weakly correlated at the 0.5% (r = 0.58, P < 0.006) and 1% levels (r = 0.51, P < 0.02) with the inhibition of NNK mutagenesis. A similar correlation (r = 0.50, P < 0.02) existed for the pre-incubation assay for NNK.

Black tea, unfermented rooibos, RgM and green tea displayed the highest protection at a concentration level of 0.5% against NNAL.
induced mutagenesis. By comparison, the honeybush extracts exhibited a far lower protective effect. Fermented and unfermented honeybush were equally effective although the TPP of the fermented extract was almost 2 fold lower. On the other hand, fermented rooibos exhibited a weaker response against NNAL-induced mutagenesis when compared to unfermented rooibos at a similar TPP level. Of interest is that RGm also exhibited a similar protection than unfermented rooibos despite the higher TPP level per plate. No correlation was noticed between the TPP level of the extracts and inhibition of NNAL mutagenesis.

Inter assay assessments and antimutagenic comparisons showed that the plate incorporation method proved to be more sensitive in determining the protection of unfermented rooibos and RGm extracts against NNK-induced mutagenesis at the 0.5% level (Fig. 1). In contrast, a significant (P < 0.05) higher protection was observed for fermented rooibos when utilising the pre-incubation assay. Both honeybush and black tea extracts displayed similar protection in both the plate incorporation and pre-incubation method assay at 0.5% and 1% (Fig. 1; Table 2). Green tea was more effective against NNK-induced mutagenesis in the pre-incubation assay at the 1% concentration level. However, a similar response was noticed at the 0.5% concentration, irrespective of assay procedure. Unfermented rooibos, RGm, unfermented honeybush, fermented honeybush and green tea extracts offered a higher protection against NNAL in the pre-incubation assay when compared to NNK at the 0.5% concentration.

4. Discussion

The well-documented antimutagenic properties of *C. sinensis* have been attributed to their polyphenolic content (Ioannides and Yoxall, 2003), in particular ECGG and the oxidised flavanol products, namely theaflavins and thearubigins. Green tea reduced NNK-induced mutagenesis by 10 to 50% in mouse liver, lung and oesophagus (von Pressentin et al., 2001). Both green and black tea inhibited NNK-induced lung tumours in mice and rats (Chung, 1999). These studies suggest that the disruption of the metabolism of tobacco-specific N-nitrosamines yielding the ultimate carcinogenic metabolites prevents their carcinogenic properties in experimental animals. Extracts of rooibos and honeybush (*C. intermedia*) were also reported to inhibit the development of oesophageal carcinogenesis in rats, utilising the site specific carcinogen methyl benzyl nitrosamine (Sissing et al., 2011).

Nitrogen lacks mutagenicity against the bacterial strain TA1535 in the standard plate incorporation assay or pre-incubation assay, which is in agreement with previous studies (Doolittle et al., 1995). The mutagenicity of NNK is well documented utilising the plate incorporation assay (Yim and Hee, 2001), while that of NNAL could only be demonstrated using a modified pre-incubation version of the *Salmonella* mutagenicity assay (Brown et al., 2001). The present study showed a weak mutagenic response for NNAL, lacking a clear dose mutagenic response in both assays. The moderate to weak mutagenic responses of NNK and NNAL is likely due to the S-9 preparations prepared from Arorclor 1254-induced rats as the latter was shown not to induce the CYP2A6 isoform responsible for the activation of these mutagens in the liver of rats (Easterbrook et al., 2001).

The antimutagenic properties of rooibos and honeybush have been reviewed (Joubert et al., 2008a). Extracts of fermented and unfermented rooibos and honeybush protected against 2-acetylaminofluorene (2-AAF) and aflatoxin B1 (AFB1)-induced mutagenesis using the tester strains TA98 and TA100 in the presence of metabolic activation. The honeybush polyphenols, mangiferin, eriocitrin and narirutin, exhibit moderate antimutagenicity against aflatoxin B1 whereas hesperetin and eriodictiol exhibited similar protective properties than the green tea flavanol, ECGG (Van der Merwe et al., 2006). The rooibos flavonol glycoside, rutin, suppresses the enhanced mutagenic effects of β-carotene on NNK in human alveolar basal epithelial cells by decreasing the intracellular DNA strand breaks (Yeh et al., 2006). The current study provides the first evidence that extracts of these herbal teas may protect against mutagenesis of the tobacco specific mutagens.

Differences were noticed when considering the protective effects of the herbal tea extracts against the mutagenic effects of NNK and NNAL. Apart from fermented rooibos all the extracts were more effective against NNAL than NNK when utilising the pre-incubation test. It is known that differences exist in the protection against different mutagens as rooibos was found to be more effective against the mutagenicity of AFB1 than 2-AAF (Joubert et al., 2008a). However, the weak mutagenic response of NNAL compared to NNK could explain the apparent more effective protection against NNAL-induced mutagenesis by the different extracts. In general, rooibos exhibits a higher antimutagenic effect than honeybush, which is ascribed to differences in their polyphenol constituents, considering that, although both rooibos extracts had a similar TPP content than unfermented honeybush, it exhibited a significant higher protection. Fermented honeybush contained far less TPP and hence exhibited a weaker protection. Total polyphenol enrichment of unfermented rooibos further implies the role of these type of compounds in the protection against NNK as RGm was more effective in both the plate incorporation and pre-incubation assays.

Black tea, with a similar TPP content than green tea, offered more protection against mutagenicity, which is in agreement with a previous investigation indicating black tea to be more effective against 2-AAF and AFB1-induced mutagenesis (Joubert et al., 2008a). Black tea contains flavanol oxidation products, i.e. theaflavins and the more complex polymeric constituents, thearubigins. When compared to both rooibos and unfermented honeybush, black tea was more effective in protecting against the tobacco-specific mutagens. This also became apparent when comparing the antimutagenic properties of black tea and RGm extracts with the latter, containing a significant higher level of TPP, exhibiting a similar protective effect. As reported previously, “fermentation” (oxidation) of the herbal teas resulted in a substantial reduction in the total polyphenol and individual polyphenol content, as well as their antimutagenic properties (Joubert et al., 2008b).

The type of mutagen and mutagenicity assay used is of importance. Unfermented rooibos exhibited a weaker protection against NNK, while it showed a higher protection against NNAL in the pre-incubation assay. In the plate incorporation assay, unfermented rooibos exhibited a weaker protection against NNK-induced mutagenesis when compared to the pre-incubation assay. Green tea, however, exhibited a weak response against NNK in both assays, while exhibiting a higher protection against NNAL.
their metabolic pathway, or catalysing the decomposition of the reac-
tometabolic activation of mutagens and carcinogens thereby altering
radicals, interfering with the P450 activation system required for the
by polyphenols range from their ability to scavenge electrophiles or free
erties in vivo should take cognizance of other biological properties of the
mechanism in the current study, direct extrapolation of the
polyphenol/CYP450 interactions that will vary depending on speci
NNAL-induced mutagenesis could be ascribed to speci
flavanone aglycones, eriodictiol and hesperetin of
microsomes, indicating an interaction of the constituents with CYP450
The inhibition of the mutagenicity of NNK and NNAL. Although very little data exist
wild and cultivated plants of Sutherlandia frutescens (Fabaceae). South African
Journal of Botany 82, 33–45.
tion of flavonoids and coumaroan glyco-
sides from aerial parts of Sutherlandia frutescens (L.) by using LC-UV/ELSD methods and con-
t potential of rooibos flavonoids in humans following the consumption of difer
different rooibos formulations. Food Chemistry 128, 338–347.
Chung, F.L., 1999. The prevention of lung cancer induced by a tobacco-specific carcinogen in rodents by green and black tea. Proceed-
ing of the Society for Experimental Biology and Medicine 220, 244–248.
lic compound analysis and application to other Cyclopia spp. Journal of Food Composi-
on and Analysis 23, 289–297.
ingredient extracts of Cyclopia subternata (honeybush): variation in pheno-
lic composition and antioxidant capacity. Molecules 17, 14602–14624.
Easterbrook, J., Fackett, D., Li, A.P., 2001. A comparison of arorol 1254-induced and uninduced rat liver microsomes to human liver microsomes in pheno-
ylation. Carcinogenesis 18, 243–249.
Edenharder, R., Tang, X., 2007. Inhibition of the mutagenicity of 2-nitrofuran, 3-
nitrofluoranthene and 1-nitropyrene by flavonoids, coumarins, quinones and other
phenolic compounds. Food and Chemical Toxicology 35, 357–372.
Hecht, S.S., Spratt, T.E., Trushin, N., 1997. Absolute configuration of 4-
(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) formed metabolically from 4-
(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Carcinogenesis 18, 1851–1854.
Hecht, S.S., Hochalter, J.B., Villalta, P.W., Murphy, S.E., 2000. 2′-Hydroxylation of nicotine by
cytochrome P450 2A6 and human liver microsomes: formation of a lung
References
Albrecht, C.F., Stander, M.A., Grobbelaar, M.C., Colling, J., Kossmann, J., Hills, P.N., Makunga,
N.P., 2012. LC–MS-based metabolomics assists with quality assessment and traceability
of wild and cultivated plants of Sutherlandia frutescens (Fabaceae). South African
Journal of Botany 82, 33–45.
tion of flavonoids and coumaroan glyco-
sides from aerial parts of Sutherlandia frutescens (L.) by using LC-UV/ELSD methods and con-
t potential of rooibos flavonoids in humans following the consumption of difer
different rooibos formulations. Food Chemistry 128, 338–347.
Chung, F.L., 1999. The prevention of lung cancer induced by a tobacco-specific carcinogen in rodents by green and black tea. Proceed-
ing of the Society for Experimental Biology and Medicine 220, 244–248.
lic compound analysis and application to other Cyclopia spp. Journal of Food Composi-
on and Analysis 23, 289–297.
ingredient extracts of Cyclopia subternata (honeybush): variation in pheno-
lic composition and antioxidant capacity. Molecules 17, 14602–14624.
Easterbrook, J., Fackett, D., Li, A.P., 2001. A comparison of arorol 1254-induced and uninduced rat liver microsomes to human liver microsomes in pheno-
ylation. Carcinogenesis 18, 243–249.
Edenharder, R., Tang, X., 2007. Inhibition of the mutagenicity of 2-nitrofuran, 3-
nitrofluoranthene and 1-nitropyrene by flavonoids, coumarins, quinones and other
phenolic compounds. Food and Chemical Toxicology 35, 357–372.
Hecht, S.S., Spratt, T.E., Trushin, N., 1997. Absolute configuration of 4-
(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) formed metabolically from 4-
(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Carcinogenesis 18, 1851–1854.
Hecht, S.S., Hochalter, J.B., Villalta, P.W., Murphy, S.E., 2000. 2′-Hydroxylation of nicotine by
cytochrome P450 2A6 and human liver microsomes: formation of a lung
Conflict of interest
No conflict of interest to disclose.
Acknowledgements
The authors would like to thank the Cancer Association of South Africa and the South African Rooibos Tea Council for financially
supporting this research, and Marietjie Stander of the Central Analytical Laboratory of Stellenbosch University for LC–MS analysis of cancer
bush extract.
Appendix A. Supplementary data
Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jsajb.2016.06.004.

Van der Merwe, J.D., 2004. A Comparative Study on Protection of Cyclopia spp. (Honeybush), Aspalathus linears (Rooibos) and Camellia sinensis Teas Against Aflatoxin B1. Induced Mutagenesis in the Salmonella Mutagenicity Assay: Possible Mechanisms Involved Msc in Food Science Stellenbosch University, South Africa.

